
ARI Research Note 88-01

N

LispSEI: The Programmer's Manual FL

Hans Tallus
University of California at Irvine

for

Contracting Officer's Representative
Judith Orasanu

BASIC RESEARCH LABORATORY

Michael Kaplan, DirectorD T U

________ ~FEB 1 0 1988

U. S. Army

Research Institute for the Behavioral and Social Sciences

January 1988

Approved for public release; distribution unlimited.

88 2 MINO~

U. S. ARMY RESEARCH INSTITUTE

FOR THE BEHAVIORAL AND SOCIAL SCIENCES

A Field Operating Agency under the Jurisdiction of the

Deputy Chief of Staff for Personnel

WM. DARRYL HENDERSON

EDGAR M. JOHNSON COL, IN
Technical Director Cmadn

Research accomplished under contract

for the Department of the Army

University of California at Irvine

Accession For
Technical review by NI RS

DTIC TA

Dan Ragland
DI A
Unannounced

C -Distribution/

Avail and/or

SThis t.port* as submitted by ithe contractr has been cleared fee release to Defense Technical informationl Cetert
(OTIC) to comply with regulatory requitements. 11 hat been given no primary distribution wtte tht%~ to OTIC
and will be available only through DTIc or other reference services such as the National Technical Infof motion

Sarvico 1INTIS). The .scwos. cpini- ns. and/or findings contained on this report are those of the authorfil and I
should not be coflstwo. as an oflicia Corpootmernt of the Army position, policy, or decision. unless to designated
by other official dlocumetntation.

UNCLASSIFIED
S CURIY CLASSIFICATIO N OF T 14S PAGE (Wen Date E te e)RE D I S UC ON

REPORT DOCUMENTATION PAEBEFORE COMPLETING FORM
MBE3. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TILE (nd Sobtils)5. TYPE OF REPORT & PERIOD COVERED

Interim Report
LispSEI: The Programner's Manual January 86 - January 87

6. PERFORMING ORG. REPORT NUMBER

7. -AUtTOR(s) S. CONTRACT OR GRANT NUMBER(&)

Hans Tallus MDA9O3-85-C-0324

S. PERFORMING ORGANI ZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERSDepartment of Informa tion and Computer Science, 2Ql61O2B74F

University of California at Irvine
Irvine,_CA__92717_______________

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
U.S. Army Research Institute for the Behavioral January 1988
and Social Sciences, 5001 Eisenhower Avenue, 13. NUMBER OFPAGES
Alexandria, VA 22333-5600 18

14. MONITORING AGENCY NAME & ADDRESS(If dliffermnt bass Conthoilln Office) 1S. SECURITY CLASS. (of this report)

Unclassified
ISa. DECLASSIFICATION/ DOWNGRADING

SCHEDULE

IS. DISTRIBUTION STATEMENT (of dole Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of tie abstract mntered I Block "0, it different frvom Report)

IS. SUPPLEMENTARY NOTES

Judith Orasanu, contracting officer's representative

19. KEY WORDS (Cmiaiaue an reverse side It necessary and iden~tity by block nmb er)

World Modeler 44

Computer Models
Artificial Intelligence
Lisp
SEI

2& AMTRACT (Codbu si revervesfd N~ neeemm an Ne..tlif by block mmber)

This research note provides a listing of the lowest level Lisp functions, as
well as a more precise definition of the capabilities of the different layers
of the SEI. It also separates filtering from basic copying operations, shows
how to hide the C code within the SEI, and cleans up some other unnecessary
hair in the current SEI implementation.

DO 73 01OO OV6 SL UNCLASSIFIED
iSECURITY CLASSIFICATIOPI OF THIS PAGE (When Data Entered)

U S S~a -.-. - S U S

LispSEI: The Programmer's Manual
Hans Tallis

()4ke, Purpose of IUspSEI and This Document 5

1.Hide, once and for all, all C code within the SEI.
-J

)Provide a convenient listing of lowest level Lisp functions accessing and changing state in the SEI.
> L-" ,

3)Provide a more precise definition of the capabilities of the different layers of the SEI. Currently
the functions provided via FRANzsELL (for example) repre~ent a mix of simple data copying
operations (for example, passing the list of world objects on up to the organism) as well as more
intelligent operations (the multi-step implementation of *turn' for example). LispSE[will
provide only the simple data passing and control operations defined below, with the more
complex operations being defined elsewhere in the SEI.

-3
4) Separate out filtering operations from the basic copying of the world state. The

filtering/massaging will be taking place in a number of library modules discussed elsewhere. -,.

i Clean up some other unnecessary hair present in the current SEI uinplementation. , -
i t t) 'Baciground) • (-

LispSEI is only meant to provide a minimal set of operations an organism could request. It is entirely possible
that additional functionality could be added to the LispSEI later. N.B.: Currently it is not expected that
Lisp-based organisms will be referencing LispSEI directly; rather, they will interact through the SEI library
functions described in a separate document.

The organism interacts with the SEI in exactly three ways:

1. The organism receives state information from the SE (objects in the world, emissions, and other
miscellaneous inoraiion specific to the current SE)

2. The organism sends sate-change requests to the SEI (emissions, motions of the organism,
operations of the organism's parts. etc.) Note that this may be a superset of effector requests.

3. The organi sends control commands to the SE! (get world changes, send "ok to proceed," and
soor).

Curmtly W FCr.c biulns functions of the second sort, while ,RCEIEc implements functions of the
frst and tird sot.

Cbmnes

1. PCOViC will be split into two files, PMCTv-c and S oCO r oLC, with the latter
inplementing control commands from the organism to the SEI.

2. The SEI will be written entirely in C and Lisp. LispSEI will be able to run under either Franz or
Lucid Common Lisp (using the same source.)

*56

I

2

3. The batch of functions defined in file USPSi., (which irnplcments LispSl'l) will call functions in
PERCEIVE.C. SECON rROi..C, and i*m:.cr c. The highcr-lcvcl processing portions of thc SEI (to be
described in a future document) will call exclusively functions in USPSEI.C.

4. RKUNK.C, SEILNK.S1SP, and SEJFACE.SUSP will all disappcar. [We no longer write Spice Lisp
organisms.]

5. Certain actions of PERCEIVE.C (viz. automatically copying the whole world of objects from C into
Lisp) may no longer automatically be done (at the implcmentor's discretion).

6. The following will be the typical cycle for calls into LispSEl. The order is not too critical; in

particular, steps b through e may occur in any order.

a. (Receive-Updated-World).

b. Request descriptions of objects by objNumber. one at a dime. (The objNumber is a unique
integer identifying that object within the world.) Alternately, individual fields of object
may be referenced.

c. Request information from other senses, such as a list of things smelled, or a list of audible
emissions, and so on.

d. Request some effector actions, such as changing the object's motion vector, or emitting a
sound or swinging an arm around.

e. Make other (illegal) changes to world objects. (Intuitively, illegal changes are those which a
typical organism in a world could not easily carry out, such as changing the velocity of
arbitrary objects at a distance.)

f. (Ok-To-Proceed) to end a cycle. 4

The LispSEI thus provides essentially unlimited access to the world data structure and other state

information.

Newly Defined Data Types and Their Accessing Functions

These are new to the LispSEI implementation. They are meant primarily to aid in the passing of data in a

reasonably efficient way. The data types are just unguaranteed hints as to how these data packets might be

implemented in iapSEI. The user of LispSEI should only access these objects via the accessing functions

decribed next to each data tpe Remember that the Set-ing functions operate only on the data object, and do

not affect the actual objects, emsions, et. in the world.

e (setq example-Mati-Type (make-array 4 4
:element-type 'Integer
:Initial-element 0))

(This is not strictly a data type, rather a template for one.)

(Get-Matrix-Type.ElementstAs-Lst Matrix-Type) returns the elements of a Matrix-
Type object as a list in the order (Matrix-Type[O.0 Matrix-Type[0,1 Matrix-
Type[0,21 - MatrixType[3.3).

L'4

3

(Get-Matrix-Typc-Ekets-As-Array Afairix-Type) rcturns a lisp array.

* (declare-type Vector-Type*
(X 0.0 :type double)
(Y 0.0 :type double)
(Z 0.0 :type double))

(Gct-VectorType-X Vector- Type) returns a double.
(Set-Vcctor-Typc-X value Vector-Type) Sets the Xcomponent
of Vector- Type to be value.
(Get-Vector-Type-V Vector-Type) does the obvious thing.
(Set-Vector-Type-V value Vector- Type) does the obvious thing.
(Get-Vector-Type-Z Vector-Type) does the obvious thing.
(Set-VectorType-Z value Vector- Type) does the obvious thing.

* (declare-type Vertex-Type
(X 0.0 :type double)
(Y 0.0 :type double)
(Z 0.0 :type double))

(Get-Vertex-Type-X Vertex-Type) does the obvious thing.
(Get-Vertex-Type-V Vertex-Type) does the obvious thing.
(Get-Vertex-Type-Z Vertex-Type) does the obvious thing.

Set-ing functions arm as for Vector-Type.

* (declIare- type Apply-Type
Force -.Vector-Type
(Force-Time .0.0 :type double)
Torque ;Vector-Type
(Torque-Time 0.0 :type double)
(Magnetic-Force 0.0 :type double)'
(Magnetic-Time 0.0 :tipe double))

(Get-Apply-Type-Force Apply- Type) retarn a Vector-Type, which can be further
accessed via the accessors defined above.
(Get-Apply-Type-Force-Time Apply-Type) does the obvious thing.
(Get-Apply-Type-Torqu Apply-Type) does the obvious thing
(Get-Apply-Type-Torque-tm Apply-Type) does the obvious thing.
(Get-Apply-Type-Maguetic-Force Apply- Type) does the obvious thing.
(Get-Apply-Type-Magetc-TnMe Apply-Type) does the obvious thng.

Set-ing functions are as for Vector-Type.

o (declare-type Color-Type
(Red-Component 0 :typo integer) J
(Green-Component 0 :type integer)
(Blue-Component 0 :type integer))

Accemor similars tosefor Apply-Type. Set-ing fUnctions are as for Vector-Type.

4

*~ *(declare-type rasic-Type
(Sweet 0 :type integer) .
(Sour 0 :type integer)
(Bitter 0 :type integer)
(Salty 0 :type integer))

Accessors suilar to those for Apply-Type. Set-ing functions are as for Vector-Type.

* (declare-type Object-Type
(Object-Number 0 :type integer)
(Object-Name "" :type string)
(Previous-Object 0 :type integer)
(Next-Object 0 :type integer)
(Part-Of 0 :type integer)
(Part-Collision 0 :type integer)
(Part-Magnetism 0 :type integer)
Transform ;Matrix-Type
(Scale-Factor 0.0 :type double)
Location ;Vector-Type
Rotation ;Vector-Type
Velocity ;Vector-Type
Rotational-Velocity ;Vector-Type
Acceleration ;Vector-Type
Rotational-Acceleration ;Vector-Type
Forces ;Apply-Type
(Buoyancy 0.0 :type double)
Mass-Center ';Vector-Type
(Mass 0.0 :type double)
(Enclosure 0.0 :type double)
(Kind-Of-Object 0 :type Integer)
(Composed-Of 0 :type integer) ;for Complex
(Changed-Below 0 :type integer)
(Elasticity 0.0 :type double) ;for Prim
(Restitution 0.0 :type double)
(Friction 0.0 :type double)
Inside-Color ;Color-Type
Outside-Color ;Color-Type
(Outside-Surface-Texture 0 :type integer)
(Inside-Surface-Texture 0 :type integer)
Taste ;Taste-Type
(Temperature 0.0 :type double)
Axis ;Vector-Type; for Cylinder
(Height 0.0 :type double) A
(Radius 0.0 :type double)
Normal ;Vector-Type; for Polygon
Vertices) 11I note: a list of

Vertex-Types 11

Acceuors aimla to those for Apply-TyKe except:
(Get-Object-Typ-Verices Object- Type) return a list, of Vertex-Types.

Also, we have &he finction
(GtOj-Set sot oijNwnber) rewuns the value of the slot
for the indicated objNumber. Slot names for this function are formed by
prependLi4 a colon to the n=me of the asociated wcessor function for
Object-Type without the "Gui-" prefix. Tbus. (Get-Object-Slot

5

*-Objec-Type-Next-Objeci 7) returns thic same thing as
(Gct-Ohject-Typc-Ncxt-Ohjcct (Object 7)) returns.

Set-ing functions arc as for Vector-Type.

*(decl are- type Emission-Type
(Emission-ID 0 :type integer)
(Next 0 :type integer)
(Previous 0 :type integer)
(Emission-Type 0 :type integer)
Origin ;Vector-Type
(Time 0.0 :type double)
(Intensity 0 :type integer)
(Spread 0.0 :type double)
(Diffusion 0.0 :type double)
(Decay 0.0 :type double)
(Duration 0.0 :type double)
(Rep 0 :type integer)
(Bytes 0 :type integer)
Desc ;a vector of size Bytes

Accessors simiflar to those. for Apply-Type, except:
(Ge-Emision-Type-Desc-As-List Emission- Type) returns the vecbor as a list.
(Gct-Emission-Type-Desc-As-Array Emission-Type) returns the vector as a Lisp array.

Set-ing functions are as for Vector-Type.

* (declare-type Contact-Type
(Objectl 0 :type integer);thesfi 4 are ObJNumbers
(Objecti-part 0 :type integer)
(Object2 0 :type integer)
(Object2-part 0 :type Integer) 4
Point ; Vector-Type
Force ; Vector-Type
Magnetism-Flag) ;boolean

Accessors similar to those for Apply-Type. Set-ing functions are as for Vector-Type.

A List of Functions

This is a list of the functions provided in Lisp by uspseI.

Receiving State Ibnnratdoe

" (Object-Head) meumn the objNumnber of the head object for the world.

* (Organilm-Numbev) returns the objNumber of the organism.

" (Object obJNumbe) returns an Object-Type corresponding to the world object identified as
objNwnbe.

" (Eisisslo.-Head) returns the emitNumber of the head emission for the world.

" (Emsio elNumber) returns an Emission-Type corresponding to the world emission identified

as emiNumber.

6

" (Contacts) returns a list of all Contact-Types for thec world.

" (Gravity) returns a Vecctor-Type spdcifying the gravity vector.

" (Time-Step) returns the number of seconds in a cycle.

" (World-Timne) returns the current world time.

* (World-Steps) returns thc number of world steps in a cycle. Typically this is used only by the

World Master.
" (Irecionl-Lght-lecor)retrns VetorTyp spciwgthedirctioal igh vetor

" (Directional-Light-ctlor) returns a Cor-Type specifying the directional light cor.

* (Ambient-light-Color) returns a Color-Type specin the ambient light color.

* (Ambient-Temperature) returns the ambient temperature.

" (Viscosity) returns the viscosity.

" (World-Name) returns a string naming the world.

" (Trace-Name) returns a string naming the trace of the world.

" (Path-Name) return a string naming the directory into which SEI files will be written.

* (Organism-Name) returns a string naming the organism.

" (Cycle-Number) returns the number of cycles since the SEI started.

Sending State Change Requests

" (Effect-Object-Velockty x y z objNumber) changes the velocity of the specified object.

" (Effect-Object-Acceleration x y z obiNumber) changes the aceleration of the specified object.

* (EU ect-bet-Rotational-Velocity x y z objNwnber) changes the rotational velocity of the
specified object.

* (Effect-Objec-Rotaloanal--Acceleratoe x y z objNumber) changes the rotational acceleration of
One spegfid objecL

* (Effect-Object-Torque x y z duration obJNumber) applies a Torque for the specified duration to
the specified object I

e (Effect-Objec-Force x y z duratioii obiNumber) applies a foree for the specified duration to the
specified object

e (Effect-Object-Miagnetlu. limb force duration) applies a specified magnetic force to the specified

7

limb for the specified duration. %

* (Effect-Object-Location x y z ObjNunber) changes the location of the specified object. I

" (Effect-Object-Rotation xy z ObjNumber) changes the rotation of the specified object.

" (Delete-Object objNumber) removes an object from the world.

" (Create- Emission Emission-Type Origin Intensity Spread Diffusion Decay Duration Rep Bytes
Desc) requests the addition of an emission to the world. The types of the arguments are given by

the description of the Emission-Type declare-type above. The Origin should be given as a list of
three doubles. The Dex should be given as a list. The fields of an emission which are not
specified are Emission-ID, Next, Previous, and Time. LispSEI will select an appropriate Emission-
ID and insert the current world time.

The following functions currently in EFFECT.C either are complex (they involve some processing to

implement, beyond simple data copying) or they are stubs representing future capabilities of the SEI. T1hey

will be removed and will at some later time be implemented in Lisp or properly implemented in C: lightcycle,

tempcycle, stop, move, turn, rkeat, emitodor, emitsound, eat, pickup, contact, near, drop, holding, nibble

Control Commands

" (Set-Debugflag) sets the Debug flag to the specified value, either 0 or 1.*
" (Set-linkDebugflag) sets the linkDebug flag to the specified value, either 0 or 1.

" (Star2t-SEI &optional (debug file "seilog") (started 1)) calls the CDMMUN.C function StartSei.
debugfile is a string: started is an integer. started should be 0 if the SEI is started manually and
then added to the world via a Ul AttachSEl command, I otherwise. At the current time, an SEI is
only Start-ed at the end of a master cycle, so nothing will appear to happen until all other ports in
the world send Ok's to the master, at which time the entire world will be sent to the SE.

" (Enter-World wvr/rdNme organiomName &optional (debugfile "seilog")) allows an SEI to join a
world without requiring the oversight of a U!. All three arguments are strings. woridName should
be the name of the world to join. organismNameis the name to be associated with the SEI process
(i.e., the mind as opposed to the body). This does not associate the organism with any object in
the world. This may be done later via a Set-Organism-Body call. See the note for Start-SEI
above regarding interation with other ports in the world.

" (Set-Orpnism-Body objNumber) sea the organism body to be the object numbered objNumber,
an integer.

" (Save-State) dumps the current Lisp process (organism + SEJ) into the file specified in CKPfile in .
the directory specified by (Path-Name.

,.

" (Ok-To-Proceed) flushes the effector queue to the Master and sends an "OkToProceed" message.

" (RecelveUpdated-World) waits for the master to send the updated world, it then absorbs the

changes

8

/usrmI0/worldm/src/sei/seidef.lisp Tue Nov 18 00:28:06 1986 Page 1, Line 1

This is Common Lisp ---

,;World Modeler 5.1 Library-Definition package.
.;Started 20-Oct-86 PH5.
*;Soe /ml/usr/pshell/worldm/sei/selprop.press or .mss for complete details.
*;Uses li3p39i.lisp. the base-level lisp SEX.

*:This provides macros for defining sensors and filters.
,:The top-level functions in this module are:

.:(def-sensor <sensor-name> (sense-type) (object> <entity-filters>
(field-mungers>)

.;(sense *(sensor-natne))

.(def-filter (name> (params> <sense-type> . <body>)

.;(def-field-munger <name> (params> (sense-type> (field> (body>)

.:(v'.1-constraint (name) (params> (sense-type> (function>)

.;(Liston)

;(Taste)
.:(Smell)
.;(See)

(defvar *TRACE-SENSE* NIL)

(defvar $SOUNO-TYPE: 0) ;;Equivalent to the defines in world.h
(defvar OSMELL-TYPE 1)
(defvar OMAX-OSJECTSO 64)
(defvar *GOT-OBJECT-ARRAYO (make-array *MAX-OBJECTS* :element-type '(mod 2)))

B; fit N in the bit *GOT-OBJECT-ARRAYO is on 1ff' object IN has been retrieved
;:from C in the current cycle.

(defvar *G0T-OBJECT-ARRAY-CYCLEO 0.0)
*;Equal to the cycle that *GOT-OBJECT-ARRAYO was gotten on.

(defvar *OBJECT-ARRAY$ (make-array *MAX-OBJECTS*))

(defvar *SENSES* *(vision hearing smell taste touch))
(defvar *ENTITIES* '(object sound smell taste contact))

;Wanked from LispSEI.l:
(defvar PRIMITIVE 0)
(defvar COMPLEXOBJ 1)
(defvar POLYGON 2)
(defvar CYLINDER 3)
(defvar CIRCLE 4)
(defvar SPHERE 6)
(defvar NOODJECT 6)

;:Like concat but expands what it can at expansion time and otherwise wraps
:a symbol-name call to function calls.

(detmacro smash (&rest seqs)
%14O(intern (concatenate 'string .I(proere-seqs seqa)))) 5

(oval-when (load compile oval)
(defun prepare-seqa (seqs)

(mapcar olpreparo-seq seqa)).

(defun proere-seq (seq)
(cond ((numberp seq) (princ-to-string seq))

((Iistp seq) \140(princ-to-string seq))
((not (stringp seq)) \140(smart-symbol-name soq))
(t 260))

(defun smart-symbol-name (thing)
(cond ((or (numberp thing) (listp thing))

9

/usrmlO/worldm/src/sei/seidef.lisp Tue Nov 18 00:28:06 1986 Page 2, Line 70

(princ-to-strlng thing))
((not (stringp thing)) (symbol-name thing)) l
(t thing))))

(defmacro putprop (obj val prop)
%14O(setf (get .obj .prop) ,val))

(defmacro Object-Object-Number (Object)
\14O(Object-Type-Object-Number Object))

(detmacro Object-Name (Object)
\14O(Objsct-Type-Object-Name .Object))Iw

(defmacro Object-Previous-Object (Object)
\140(Objsct-Type-Previous-Object ,Object))

(detmacro Object-Next-Object (Object)
\140(Object-Type-Next-Object Object))

(defmacro Object-Part-Of (Object)
\140(Object-Type-Part-Of Object))

(defmacro Object-Part-Coillision (Object)
\1JO(Objoct-Type-Part-Collision Object))%

(defmacro Object-Part-Magnetism (Object)
\14O(Object-Type-Part-Magnetlsim Object))

(defmacro Object-Transform (Object)
\140(Object-Type-Transform Object))

(dofmacra Object-Scale-Factor (Object)
\14O(Object-Type-Scale-Factor Object))

(detmacro Object-Location (Object)
\14O(Object-Type-Location Object))

(defmacro Object-Rotation (Object)
\1dO(Object-Type-Rotetion Object))

(defmacro Object-Velocity (Object)
\140(Dbject-Type-Velocity Object))

(detmacro Object-Rotational-Velocity (Object)
\140Dbject-Type-Rotational-Velocity ,Object))

(defmacro Object-Acceleration (Object)
\140(Object-Type-Acceleration ,Object))

(def'macro Object-Rotatlonal-Acceleration (Object)
\140(Cbjoct-Type-Rotatlonal-Acceleration .Object))

(defmacro Object-Forces (Object)
\140(Qbject-Type-Forces ,Object))

(detmacro Object-Buoyancy (Object)
\140(Object-Type-Buoyancy Object)) e

(defmacro Object-Mass-Center (Object)
\IAO(Objact-Type-Mass-Conter Object))

(defmacro Object-Mass (Object)
\14O(Object-Type-Mass Object))

(defmacro Object-Enclosure (Object)
\14O(Objoct-Type-Enclosure Object))

(detmacro Object-Kind-Of-Object (Object)
\140(Objoct-Type-Kind-Of-Object ,Object))

(detmacro Object-Composed-Of (Object)
\140(Object-Type-Composed-Of Object))

(defimacro Object-Elasticity (Object)
\140(Objoct-Type-Elasticity ,Object))

(detmacro Object-Restitution (Object)
\14O(Object-Type-Restitution Object))

(detmacro Object-Friction (Object)
\140(Object-Type-Friction Object))

(defmacro Object-Inside-Color (Object)
\140(Object-Type-Jnside-Color Object))

(detmacro Object-Outside-Color (Object)
\140(Objoct-Type-Outs ide-Color .Object))

(detmacro Object-Outside-Surface-Texture (Object)
\140(Object-Type-Outs ide-Surface-Texture .Object))

(detmacro Object-Inside-Surface-Texture (Object)
\14O(ObjscL-Iype-Lnstde-burface-Iezture .Object))

(defmacro Object-Taste (Object)
\140(Objoct-Type-Taste Object))

- WU U~J ~. WW~.tN~fVJ~V 1J~J~. W1Ffl' R!~bU ~f~.W W2 2 W.~ 4-~-. ~ -7dJ mX leJ tn . J ' -A- -7 TV *7**

10

/usrmulO/worldm/src/sei/seilib.1isp Mon Nov 17 17:49:55 1986 Page 3, Line 139

oy see.tig which are less than max-distance meters away frown

(vector-distance (b-betlcto niy

;Zmax-distance meters away).
(vector-distance (emission-origin entity)

Onlyseesobjects which are bigger than object-enclosure meters.
(de-costrintobject-size-constraint (object-enclosure) vision

(> (object-enclosurea entity)
object-enclosure))

;;Only smells smells which are stronger than smell-threshold.
(dot-constraint smell-intensity-constraint (smell-threshold) smell
(> (emission-intensity entity)

smell -threshol d))

;;Only taste those tastes which are in contact with the sensor.
(dot-constraint only-taste-touching () taste

(member-if 9'(lambda (contact)
(eq entity (object-taste (contact-objecti-part contact))))

(contacts-of Sensorobj)))

Only feel those contacts which are touching the sensor. This is
::needed because contacts are just a list of all the contacts in the world.

(dot-constraint only-my-contacts () touch
(or (eq (contact-objectl-part entity) Sensorobj)

(eq (contact-object2-part entity) sensorobj)))

(dot-sensor sample-vision vision "organism"
((cone-of-visionl (Cos (/ pi 5))) disallow-heads))

---------------- Sample Eftector Commands--------------------;

Moves the organism forward (i.e., in the current direction) for one
time unit with the given force (scalar. in Newtons).

(defun move-forward (force objnum)
(let ((objdir (object-rotation (got-object objnum))))

(effe0ct-object-force
(force (vertex-: objdir)
(force (vertex-y objdir))
(force (vertex-z objdir))

1.0
objnum)))

(defun move-backward (force objnum)
(lt ((objdir (object-rotation (get-object objnum)))) p

(etoetfore-(vre- bdr)
(force (-(vertex-y objdir)))
(force (vrtex- objdir)))

orce (vum)- ojd)

Applies the given torque (angular force) to object for one time unit.
Note that torque a moment 0 angular acceleration, and moment is
proportional to mass.

;.First, find the current direction of the object. Convert input
magnitude and angle (in radians) to x.y. Add to current direction
and send torque command to master.

(detun turn-left (objnum magnitude &optional (angle (/ pi 20)))

/usrmlO/worldm/src/sel/silib.1isp Mon Nov 17 17:49:55 1986 Page 4, Line 208 '

(lot* ((object (get-object objnum))
(bjdlr (object-rotation object))
(dira (vertex-x objdir))
(diry (vertex-' objdir))
(dirz (vortex-z objdir))
(addi (: (co angle) magnitude))
(addy ((tcin angle) magnitude)))

(eftect-object-torque (+ dirx addx) (+ dir)' addy) dirz I objnum)))

(detun turn-right (objnum magnitude &optional (angle (/ pi 20)))
(let* ((Object (get-object objnum))

(objdir (object-rotation object))
(dinx (vertex-x objdtr))
Sdiry (vrtex-y objdir)).5
dirz (vertex-z _Objdir))
(addx (cos (angle)) magnitude)
(eddy (s(in (angle)) magnitude)

(ettect-object-tonque (+ din addx) (+ diny eddy) dirz I objrum)))

Mr -W PFpLMWX1WWJ~ PJ iW 1Wrw-11r- . .PI~.A-rWJp-~~ . j W

12

/usruulO/worldi/src/sei/Seidef.isp Tue Nov 18 00:28:06 1986 Page 5. Line 277

(cheCk-filters 'e9filters entity)
(check-mungers '.fmungers entity)
(putprop 'msama '.stype 'sense-type)
(putprop 'memom entity 'entity-type)
(putprop '.ini.. filters 'filters)
(putprop '.sname constraints 'constraints)
(putprop '.&nme '.fmungers 'fmungers)
(putprop '.sname object '3ensorobj)
(push '.sname (get ',stype 'sensors))))

(detmacro pp-sensor (snime &optional (verbose nil))
(cond ((not (get saine 'entity-type))

(format t "-S is not a sensor, sorry bud.-%" sain.))

format t "-5 sensor -S: -%" (get name 'sense-type) saine)
iformat t *Attached to object: -A-%" (get saine 'ssnsorobj))
(maybe-formati t "Filters: -S-Z" (get snamo 'filters))
(maybe-formati t "Constraints: -S-%" (get saine 'constraints))
(maybe-formati t *Field mungers: -S%" (get saine 'fmungers))))

::Only format the single value if it Is non-nil.
(defun maybe-formati (s tream control-string value)
(if value

(format stream control-string value)))

(defun print-entities (str entities etype)
(format t str)
(dolist (entity entities)

(format t " -A" (entity-name entity *type))))

(detun entity-name (entity @type)
(ease etype
(OBJECT (object-name entity))
(SOUND (smash "Sound " (emission-id entity)))
(SMELL (smash "Smell " (emission-id entity)))
(TASTE (smash "Taste " (list (taste-sweet entity) (taste-soup entity)

(taste-bitter entity) (taste-salty entity))))
(TOUCH (smash "Force * (apply-force entity)))))

Returns the specifications of constraints in the fnimes list.
(defun o t-constraints (fnames)

(let ?res)
(dolist (fnamt fnames)
(if (constraintp (get-name fname))

(push (eval-args fnam)rs)
(areversa res)))

(dofu n et-f~lters (fnames)

(let Ire$)
(dolist (fnamv ?names)
(if (filterp (get-name foame)

(push (eve I-args fame) res)))
(%reverse el)))

,:Checks to make sure that each of the names in faames is either a filter
or constraint, and for every one that isn't, tell the user.

;;Also each one must be a filter of the appropriate entity type.
(defun check-filters (fames entity)

(dolist (fname fnumes)
(let ((teal-fuame (get-name fnaeme)))

(cond ((and (not (filtorp real-fname))
(not (constraintp real-fname)))

(format t
.%-S is not a constraint or filter. Dat-sensor will ignore it.-%"
real -fname))

(t (check-type&aaumbwr faame real-fna.. entity))))))

(defun check-mungers (fnaias entity)

13

/usrmlO/worldm/src/sei/seidef.lisp Tue Nov 18 00:28:08 1986 Page 6. Line 346

(dolist (foams fnames)a
(let ((real-fname (get-name rnaine)))
(cond ((not (mungerp real-tname))

(format t
"%-S Is not a munger. Def-sonsor will ignore it.-%"
real -fname))

(t (check-type&number fname teal-foam. entity))))))

;:PRECONDITION: NAME names a defined filter, constraint or field-munger.
(defun check-type&number (spec name entity)

(cond
((not (eq (get name 'entity-type) entity))
(error "-S must be a filter for entity type -S but Is not.-%"

entity))
((not (- (get-num-params spec)

(get name 'num-params)))
(error O-S must be given -S params but was only given -S.-%"

nam
(get name 'num-params)
(gt-nun-params spec)))))

;;Since filter names, constraint names and object names may be lists with
:;additional parameters. '

(d 0fun get-name (fname)
(if (atom ?name)

fname
(car tname)))

(defun get-num-params (fname)
(it (atom fname)

0
(length (cdr fname))))

If fname has arguments, then replace e ach argument by that argument
evaluated. For example, if the user gives a (cos (/ pi 4)) arg to a
filter fn by writing (ny-filter (cos theta)), this fn would change that
to (my-filter 0.7071067) and return it.

(defun eval-arga (?nauie)
(if (atom fnane)

fname
(do ((argi (cdr foam.) (cdr args)))

((null args) maine)
(rplaca args (oval (car args));)))

(defun constraintp (name)
(get name 'constraint))

(defun filterp (name)
(get name 'filter), 9%

I 9k

(defun mungerp (name)
(get name 'Munger))

(defuacro def-filter (name params sense-type &rest body)
(when (or (get name 'constraint)

(get name 'Munger))
(cerror ORe-define it as a filter"

O-S is already defined as a constraint or Munger." name)
(putptop name nil 'constraint)
(putprop name nil 'munger))

(lot ((entity (sense-to-entity sense-type)))
%140(progn

(format t *Defining filter -S-%" '.name)

(putprop '.name '.entity 'entity-type)
(puiprop .name t 'filter)I
(putprop 'name .(length params) Ioum-params)
(defun noame (entities sonsorobj .0parals)

.@body)))

lo w aN x. W 'i T V V . L~ VJW JV A I IV. YI R 1Uw "~J'i ~ ~ ' w n - -v ~

14

/usrulO/worldm/src/sei/SOidef.liSP Tue Nov 18 00:28:06 1986 Page 7, Line 415

(doefmacro def-conhtipaint (name psrams sense-type &rest body)
(when (or (get name 'filter)

(get name 'munger))
(cerror "Re-define it as a constraint"

O-S is already defined as afilteo-a ai ,7 name)
putprop name nil 'fitir)
Sputp rOp name nil 'Munger))

(let ((entity (sentse-to-entity sense-type)))
%1dO(pron

format t "Defining constraint
-S-%" .name)

putprop .name .entity 'entity-type)
(putprop *.name t 'constraint)
(putprop '.name .(length params) 'num-params)
(de fun *name (entity sensorobj ,Sparams) "

.@body))))

*;Whon the given field is accessed for the given type of entity,
*;pro-process the value with the code in (body>.

(%4ofmacro def-field-munger (name parems sense-type field &rest body)
(when (or (get name 'filter)

(get name 'constraint))
(corror "Re-define It as a munger"

"-S is already defined as a filter or constraint." name)
(putprop name nil 'filter)
(putprop name nil 'constraint))

(let ((entity (sense-to-entity sense-type)))
%l4O(progfl

(format t "Defining munger -S-X" '.namne)
(putprop 'name .fisld 'field)
(putprop .name '.entity 'entity-type)
(putprop *name t 'Munger)
(Putprop .namo .(length params) 'RUM-params)
(defun name (field) S1params)

.@body)))

15

/usrmlO/worldm/src/sei/seidef.lisp Tue Nov I8 00:28:06 1986 Page 8, Line 451

The biggee.

For now. fields are munged only after the filters are executed. This
makes things much easier.

;:Algorithm:
(1) get initial list.
(2) take out those entitles which don't meet all the constraints.

1, 3) pass the entities list through all the filters.
(4) munge the appropriate fields

(5)u return the result.
(defn snse($nlame)

(let ((etype (get $name 'entity-type)))
(if (null etype)

(error "Sorry. -S is not a sensor defined by def-sonsor..4" sname))
(*case etype

(OBJECT (format t "Looking..:V
(SOUND (format t -Listening. .-%")
(SMELL (format t *Sniffing.:.-%)
(TASTE (format t OTasting.. -%))
(CONTACT (format t "eln.

(let ((entities (make-initial-entity-list etype))
(sensorobj (get-obj0ct-named (get sname 'sensorobj))))

(if *TRACE-SENSE* (print-entities "Initial list is: " entities *type))
(when (null entities)

(cerror "Send it through the filters anyway..4"
"Sensor -S sensed nOthing..%" MAfam))

(3etq entities (constrain-entities entities sname sensorobj))
(setq entitles (filter-entities entities aname senaorobj))
(munge-fielda entities sname)
entities)))

For every filter in the filter list associated with the given Sensorobj,
.. pass the entities list through it.

(defun filter-entities (entities sname sensorobj)
(let ((fname nil)

(fparams nil)
(etype (get $aame 'entity-type)))

(dolist (filter (get sname 'filters))
(cond ((atom filter)

(setq fname filter fparaMs nil))
(t (setq fname (car filter) fparams1 (cdr filter))))

(when *TRACE-SENSE*
Sfo rmat t "Calling filter -S" fname)
if fparams

I format t " with arguments -S.-%" fparams)format t *.-4")))
(setq entities (apply fname \140(.ontities ,sensorobj I6fparams)))
(if *TRACE-SENSE* (print-entities "List is now: " entities *type))))

entities)

;:For each entity In the entities list, it must meet all the constraints
;;associated with the sensor $name to stay in the result.

(defun constrain-entities (entities sname sensorobj)
(let ((cnlame nil)

(cparama nil)
(*type (get $ame 'entity-type)))

(dolfst (constraint (get saine 'constraints))
(cond ((Atom constraint)

(setq cname constraint cparams nil))
(t (setq cname (car constraint) cparams (cdr constraint))))

(when *TRACE-SENSE*
Sfor mat t "Calling constraint -S" cname)
iff cparams

(format t 0 with arguments -S.-%" cparams)
(format t ".-%")))

(let ((rem-params (cons sensorobj cparams)))
(do ((entity entities (cdr entity))

(lasts nil entities))
((null entity) entities)

16

/usrmIl0/worldn/src/sei/seidef.lisp Tue Nov 18 00:28:06 1988 Page 9, Line 520 O

(cond ((not (apply cname (cons (car entity) rem-params))) ;;constrained
(if' *TRACE-SENSE0

(format t "Entity -S get3 constrained.-V
(entity-name (car entity) *type)))

(if (null laste)
(setq entities (cdr entities))
(set? (cdr laste) (cdr entity))))))))

(if -TRACE-SENSEO (print-entities "List is now: " entities *type))
entities))

Won't work for all field types since LispSEZ doesn't provide setting
;:functions for all field types.

(defun munge-fields (entities &name)
(let ((Ensue nil)

sparams nil)
*type (get sname 'entity-type)))

(dolist (munger (get sname 'fmungers))
(cond ((atom munger)

(setq uname munge' mparams nil))
(t (setq uname (car inunger) mparams (cadr munger))))

(lot ((field (get mnams 'field)))
(when *TRACE-SENSE*

i format t "Munging field -S with -S" field uname)uf paras
(format t " with arguments -S.-%" mparams)
(format t .~)

(dolist (entity entitles)
(set-field *type field entity

(funcall mname (cons (get-field inname field) mparams))))))))

(defun wake-initial-entity-list (etype) I
(ecase, *type

(OBJECT (make-object-liat))
(SOUND (make-sound-list))
(SMELL (makes-smell-list))
(TASTE (make-taste-lt)))Ol
(CONTACT (make-feel-list))

;;Make and return a list containing all the objects in the world.
(defun make-object-list ()

(make-object-listO (object-head)))

(defun make-object-listO (objnum)
(if (not (zerop objnum))

(do* ((topobj objnum (object-next-object object))
(object (get-object topobj) (get-object topobj))
(rem (cons object (make-object-listO

(object-composed-of object)))
(cons object (nconc (make-object-listO

(object-composed-of object)) res))))
((zerop (object-next-object object)) res))))

(defun make-feel-list C
(contacts))

;:Make and return a list containing all the emissions of type sound in the world.
(defun make-sound-list ()

(do ((emitnum (emission-head) (get-emission-next emission))
(emission nil (emission emitnum))
(res nil (if (soundp emission)

(Cons emission res)
tes)))

((null emitnum) res)))

(defun make-smell-list C .

(do ((emitnum (emission-head) (get-emision-next emission))
(emission nil (emission emitnuin))
(res nil (if (smellp emission)

(cons emission res)

17

/usrmlO/worldm/src/sei/seldef.lisp Tue Nov 18 00:28:06 1986 Page 10, Line 589

res)))
((null emitnum) res)))

(defun soundp (emission)
((get-amlssion-emislon-type emiss ion) $SOUND-TYPE*))

(defun, amOlip (emission)
(a (get-emission-emlssion-type emisasion) *SIELL-TYPE*))

;:Just like make-object-list except returns tho taste fields instead of
;:the whole objects.

(defun make-taste-list (
(make-object-listO (object-head)))

(de9fun make-taste-listO (objnum)
(if (not (zerop objnum))

(do* ((topobj objnum (object-next-object object))
(object (get-object topobj) (get-object topobj))
(res (list object)

(cons (object-taste object)
(nconc (make-object-l istO

(object-composed-of object)) res))))
((zerop topobj) rea))))

;;Return a list containing all the lists of entities sinsed by each
;;sensor of the FEEL type.

(defun feel ()
(get-all-sensory-input 'touch))

(defun hear (
(get-all-sensory-input 'hearing))

(defun taste (
(get-all-sensory-Input 'taste))

(defun smell (
(get-all-sensory-input 'smell))

(defun see (
(get-all-sensory-Input 'vision))

(defun get-all-sensory-input (sense)
(mapcar 9'(lambda (sensor)

(sense sensor))
(get sense 'sensors)))

11 I

